

Thiele/Small Parameters

45KMF104

Re Krm Erm Kxm Exm Cmes Lces Res fs	3.71 0.0039 0.89 0.02515 0.755 681.555 18.245 50.635 45.15	Ohm Ohm Ohm µF mH Ohm Hz	electrical voice coil resistance at DC WRIGHT inductance model WRIGHT inductance model WRIGHT inductance model WRIGHT inductance model electrical capacitance representing moving mass electrical inductance representing driver compliance resistance due to mechanical losses driver resonance frequency
Mms Mmd Rms Cms Kms Bl Lambda	110.505 103.427 3.211 0.1125 8.895 12.736 0.0175	g g kg/s mm/N N/mm Tm	mechanical mass of driver diaphragm assembly including air load and voice coil mechanical mass of voice coil and diaphragm without air load mechanical resistance of total-driver losses mechanical compliance of driver suspension mechanical stiffness of driver suspension force factor (BI product) suspension creep factor
Qtp Qms Qes Qts	0.7665 9.775 0.717 0.668		total Q-factor considering all losses mechanical Q-factor of driver in free air considering Rms only electrical Q-factor of driver in free air considering Re only total Q-factor considering Re and Rms only
Vas n0 Lm Lnom	18.37265 0.227 85.755 86.085	l dB dB	equivalent air volume of suspension reference efficiency (2 pi-radiation using Re) characteristic sound pressure level (SPL at 1m for 1W @ Re) nominal sensitivity (SPL at 1m for 1W @ Zn)
rmse Z rmse Hx	3.59 2.105		root-mean-square fitting error of driver impedance Z(f) root-mean-square fitting error of transfer function Hx (f)
Sd	339.79	cm²	diaphragm area
Xmax	10.3	mm	